Specification
Description | Recombinant protein from the full-length sequence of Homo sapiens arachidonate 5-lipoxygenase (ALOX5), transcript variant 1 (NM_000698). |
Organism | Homo sapiens (Human) |
Expression Host | Human Cells |
Tag Info | His or DYKDDDDK. Please contact us if you need further information or require specific designed tag. |
Purity | Greater than 90% by SDS-PAGE gel |
Uniprot ID | P09917 |
Entry Name | LOX5_HUMAN |
Gene Names | ALOX5 LOG5 |
Alternative Gene Names | LOG5 |
Alternative Protein Names | Polyunsaturated fatty acid 5-lipoxygenase (EC 1.13.11.-) (Arachidonate 5-lipoxygenase) (5-LO) (5-lipoxygenase) (EC 1.13.11.34) |
Application | Antigens, Western, ELISA and other in vitro binding or in vivo functional assays, and protein-protein interaction studies; For research & development use only! |
Buffer | Purified protein formulated in a sterile solution of PBS buffer, pH7.2, without any preservatives |
Endotoxin | Endotoxin level is < 0.1 ng/µg of protein (<1EU /µg) |
Length | 674 |
Molecular Weight(Da) | 77983 |
Protein Sequence | (The sequence of expressed protein may have some variation from the sequence shown below. Please contact us for the exact sequence.) MPSYTVTVATGSQWFAGTDDYIYLSLVGSAGCSEKHLLDKPFYNDFERGAVDSYDVTVDEELGEIQLVRIEKRKYWLNDDWYLKYITLKTPHGDYIEFPCYRWITGDVEVVLRDGRAKLARDDQIHILKQHRRKELETRQKQYRWMEWNPGFPLSIDAKCHKDLPRDIQFDSEKGVDFVLNYSKAMENLFINRFMHMFQSSWNDFADFEKIFVKISNTISERVMNHWQEDLMFGYQFLNGCNPVLIRRCTELPEKLPVTTEMVECSLERQLSLEQEVQQGNIFIVDFELLDGIDANKTDPCTLQFLAAPICLLYKNLANKIVPIAIQLNQIPGDENPIFLPSDAKYDWLLAKIWVRSSDFHVHQTITHLLRTHLVSEVFGIAMYRQLPAVHPIFKLLVAHVRFTIAINTKAREQLICECGLFDKANATGGGGHVQMVQRAMKDLTYASLCFPEAIKARGMESKEDIPYYFYRDDGLLVWEAIRTFTAEVVDIYYEGDQVVEEDPELQDFVNDVYVYGMRGRKSSGFPKSVKSREQLSEYLTVVIFTASAQHAAVNFGQYDWCSWIPNAPPTMRAPPPTAKGVVTIEQIVDTLPDRGRSCWHLGAVWALSQFQENELFLGMYPEEHFIEKPVKEAMARFRKNLEAIVSVIAERNKKKQLPYYYLSPDRIPNSVAI |
Background
Function | FUNCTION: Catalyzes the oxygenation of arachidonate ((5Z,8Z,11Z,14Z)-eicosatetraenoate) to 5-hydroperoxyeicosatetraenoate (5-HPETE) followed by the dehydration to 5,6- epoxyeicosatetraenoate (Leukotriene A4/LTA4), the first two steps in the biosynthesis of leukotrienes, which are potent mediators of inflammation (PubMed:8631361, PubMed:21233389, PubMed:22516296, PubMed:24282679, PubMed:19022417, PubMed:23246375, PubMed:8615788, PubMed:24893149, PubMed:31664810). Also catalyzes the oxygenation of arachidonate into 8-hydroperoxyicosatetraenoate (8-HPETE) and 12-hydroperoxyicosatetraenoate (12-HPETE) (PubMed:23246375). Displays lipoxin synthase activity being able to convert (15S)-HETE into a conjugate tetraene (PubMed:31664810). Although arachidonate is the preferred substrate, this enzyme can also metabolize oxidized fatty acids derived from arachidonate such as (15S)-HETE, eicosapentaenoate (EPA) such as (18R)- and (18S)-HEPE or docosahexaenoate (DHA) which lead to the formation of specialized pro-resolving mediators (SPM) lipoxin and resolvins E and D respectively, therefore it participates in anti-inflammatory responses (PubMed:21206090, PubMed:31664810, PubMed:8615788, PubMed:17114001, PubMed:32404334). Oxidation of DHA directly inhibits endothelial cell proliferation and sprouting angiogenesis via peroxisome proliferator-activated receptor gamma (PPARgamma) (By similarity). It does not catalyze the oxygenation of linoleic acid and does not convert (5S)-HETE to lipoxin isomers (PubMed:31664810). In addition to inflammatory processes, it participates in dendritic cell migration, wound healing through an antioxidant mechanism based on heme oxygenase-1 (HO-1) regulation expression, monocyte adhesion to the endothelium via ITGAM expression on monocytes (By similarity). Moreover, it helps establish an adaptive humoral immunity by regulating primary resting B cells and follicular helper T cells and participates in the CD40-induced production of reactive oxygen species (ROS) after CD40 ligation in B cells through interaction with PIK3R1 that bridges ALOX5 with CD40 (PubMed:21200133). Also may play a role in glucose homeostasis, regulation of insulin secretion and palmitic acid-induced insulin resistance via AMPK (By similarity). Can regulate bone mineralization and fat cell differentiation increases in induced pluripotent stem cells (By similarity). {ECO:0000250|UniProtKB:P48999, ECO:0000269|PubMed:17114001, ECO:0000269|PubMed:19022417, ECO:0000269|PubMed:21200133, ECO:0000269|PubMed:21206090, ECO:0000269|PubMed:21233389, ECO:0000269|PubMed:22516296, ECO:0000269|PubMed:23246375, ECO:0000269|PubMed:24282679, ECO:0000269|PubMed:24893149, ECO:0000269|PubMed:31664810, ECO:0000269|PubMed:32404334, ECO:0000269|PubMed:8615788, ECO:0000269|PubMed:8631361}. |
Pathway | Lipid metabolism; leukotriene A4 biosynthesis. |
Protein Families | Lipoxygenase family |
Tissue Specificity |
QC Data
Note | Please contact us for QC Data |
Product Image (Reference Only) | ![]() |